Fine Gradings of Low-Rank Complex Lie Algebras and of Their Real Forms⋆

نویسنده

  • Milena SVOBODOVÁ
چکیده

In this review paper, we treat the topic of fine gradings of Lie algebras. This concept is important not only for investigating the structural properties of the algebras, but, on top of that, the fine gradings are often used as the starting point for studying graded contractions or deformations of the algebras. One basic question tackled in the work is the relation between the terms ‘grading’ and ‘group grading’. Although these terms have originally been claimed to coincide for simple Lie algebras, it was revealed later that the proof of this assertion was incorrect. Therefore, the crucial statements about one-to-one correspondence between fine gradings and MAD-groups had to be revised and re-formulated for fine group gradings instead. However, there is still a hypothesis that the terms ‘grading’ and ‘group grading’ coincide for simple complex Lie algebras. We use the MAD-groups as the main tool for finding fine group gradings of the complex Lie algebras A3 ∼= D3, B2 ∼= C2, and D2. Besides, we develop also other methods for finding the fine (group) gradings. They are useful especially for the real forms of the complex algebras, on which they deliver richer results than the MAD-groups. Systematic use is made of the faithful representations of the three Lie algebras by 4 × 4 matrices: A3 = sl(4,C), C2 = sp(4,C), D2 = o(4,C). The inclusions sl(4,C) ⊃ sp(4,C) and sl(4,C) ⊃ o(4,C) are important in our presentation, since they allow to employ one of the methods which considerably simplifies the calculations when finding the fine group gradings of the subalgebras sp(4,C) and o(4,C).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fine Group Gradings of the Real Forms

We present an explicit description of the 'fine group gradings' (i.e. group gradings which cannot be further refined) of the real forms of the semisimple Lie algebras sl(4, C), sp(4, C), and o(4, C). All together 12 real Lie algebras are considered, and the total of 44 of their fine group gradings are listed. The inclusions sl(4, C) ⊃ sp(4, C) ⊃ o(4, C) are an important tool in our presentation...

متن کامل

Fine Gradings of the Real Forms Of

We present an explicit description of the 'fine gradings' (i.e. grad-ings which cannot be further refined) of the real forms of the semisimple Lie algebras sl(4, C), sp(4, C), and o(4, C). All together 12 real Lie algebras are considered, and the total of 44 of their fine gradings are listed. The inclusions sl(4, C) ⊃ sp(4, C) ⊃ o(4, C) are an important tool in our presentation. Systematic use ...

متن کامل

Counting Fine Gradings on Matrix Algebras and on Classical Simple Lie Algebras

Known classification results allow us to find the number of fine gradings on matrix algebras and on classical simple Lie algebras over an algebraically closed field (assuming that characteristic is not 2 in the Lie case). The computation is easy for matrix algebras and especially for simple Lie algebras of Series B, but involves counting orbits of certain finite groups in the case of Series A, ...

متن کامل

Fine Gradings on Simple Classical Lie Algebras

The fine abelian group gradings on the simple classical Lie algebras (including D4) over algebraically closed fields of characteristic 0 are determined up to equivalence. This is achieved by assigning certain invariant to such gradings that involve central graded division algebras and suitable sesquilinear forms on free modules over them.

متن کامل

Gradings of positive rank on simple Lie algebras

2 Kac coordinates 5 2.1 Based automorphisms and affine root systems . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Torsion points, Kac coordinates and the normalization algorithm . . . . . . . . . . . . 9 2.3 μm-actions on Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Principal μm-actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008